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Approximated pH of Strong Acids and Bases
Given an aqueous solution of N strong acids and M strong bases, with known
concentrations, we can define a set of acids A = {Hα}, |A| = N , and a set
of bases B = {β}, |B| = M , which we will use to compute an approximation
for the equilibrium H3O+ concentration.

We start laying out the possible reactions in a system of strong acids and
bases

Hα + H2O → H3O+ + α−, Hα ∈ A, (1)

β + H2O → Hβ+ + OH−, β ∈ B, (2)

2H2O ⇌ H3O+ + OH−, (3)

a system with a reaction for each different acid Hα ∈ A, a reaction for
each base β ∈ B, and an additional reaction for the water dissociation and
association. As we assume that all acids and bases are strong, we just take
into account their dissociation reaction. Thus, at equilibrium, we expect all
acids and bases to be fully dissociated (meaning Hα = 0, ∀Hα ∈ A, and
β = 0, ∀β ∈ B).

As those reactions only imply association and dissociation, we can simply
write our mass balance equations at any time as

[Hα]0 = [Hα] + [α−], Hα ∈ A,

[β]0 = [β] + [Hβ+], β ∈ B,

where [Hα]0 and [β]0 are the initial acid and base concentrations. The
conserved constant is thus the sum of the dissociated and undissociated

∗This is just a rough draft, expect bad typography, typos, spelling errors and more.
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chemical species derived from the initial acids and bases, serving as a form
of mass conservation.

The total charge in the solution should also be preserved. Therefore,

[H3O+] +
M∑

j=0
[Hβ+] = [OH−] +

N∑
i=0

[α−], Hα ∈ A, β ∈ B,

the equality between negative-charged and positive charged chemical species
must be maintained. In this context, neutral charged species are not consid-
ered, though they are still included in the mass balance equation.

Given the constraints dictated by the reactions and mass conservation, we
can rearrange the charge conservation equality to obtain

Kw
[H3O+] +

∑
Hα∈A

[α−] − [H3O+] −
∑
β∈B

[Hβ+] = 0,

which is a quadratic equation with two possible solutions: one positive, and
one negative. As hydronium concentration cannot be negative, the only
possible solution would be the positive one.

We can rearrage the expression as

−[H3O+]2 + (A − B)[H3O+] + Kw = 0, A =
∑

Hα∈A
[α−], B =

∑
β∈B

[Hβ+],

the sum of all concentrations of acids and bases respectively.

The positive root of this equation is an approximation of the concentration
of free H3O+ ions in an aqueous solution, which can be “easily” computed
using the quadratic formula as follows

[H3O+] = A − B ±
√

(A − B)2 + 4Kw
2 ,

or by using root-finding algorithms.

Numerical instabilities in the quadratic formula

Given the quadratic formula for the approximate pH

[H3O+] = A − B ±
√

(A − B)2 + 4Kw
2 ,

when numerically solving for [H3O+], and considering Kw ≈ 10−14 as the
standard value, numerical instabilities can araise. This is due to the fact that
Kw can be significantly smaller than A − B. Thus, the subtraction in the
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numerator can potentially involve two similar values, potentially resulting in
numerical instabilities. 1

A quadratic equation with real coefficients a, b, and c, generally represented
as

0 = a · x2 + b · x + c,

can be solved using two different methods. The widely known solution is

x = −b ±
√

b2 − 4 · a · c

2 · a
,

and an alternate, yet equivalent, form known as the “citardauq” formula
is

x = 2 · c

−b ±
√

b2 − 4 · a · c
,

which provides the same roots, assuming ac ̸= 0.

Both expressions may cause difficulties when a or c (or both) are small relative
to b. Under such circumstances, one of the roots will require subtracting b
from a value that is nearly equal to it, a process that often leads to significant
numerical inaccuracies.

This issue can be circumvented by calculating the root that does not necessi-
tate the subtraction of b using the appropriate formula.

An analogous numerical recipe is to compute

q ≡ −1
2 ·
[
b + sgn(b) ·

√
b2 − 4 · a · c

]
,

with

sgn(u) =
{

−1 if u < 0,

+1 if u ≥ 0,

a version of the the signum function with the indeterminacy at zero removed,
restricting the point to be grouped with either the positive or the negative
numbers.

Then the two roots are

x1 = q

a
, x2 = c

q
.

However, this approach encounters issues if a = 0, although this is not a con-
cern since the use of a quadratic solver is redundant in such a scenario.

1This is commonly known as “catastrophic cancellation” in floating-point number
systems with subnormal numbers like IEEE 755. Check [1].
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Approximated pH of Weak Acids and Bases
Suppose a mixture of a weak acid Hα and a weak base β, with known initial
concentrations in an aqueous solution. (Although it can be easily generalized
for any number of acids and bases.)

We have the following reactions and their respective equilibria

Hα + H2O ⇌ H3O+ + α−, Ka = [H3O+] · [α−]
[Hα] ,

β + H2O ⇌ Hβ+ + OH−, Kb = [Hβ+] · [OH−]
[β] ,

2H2O ⇌ H3O+ + OH−, Kw = [H3O+] · [OH−].

Simulations of this set of reactions can be performed to recreate paths leading
to the global equilibria, but we are able to find an approximation to the
equilibrium with some additional restrictions.

Following the same procedure as in the strong acids and bases case, the
concentration of each chemical species must be preserved. Thus,

[Hα]0 = [Hα] + [α−],

[β]t0 = [β] + [Hβ+].

As in the previous case, total charge must also be preserved

[H3O+] + [Hβ+] = [OH−] + [α−].

Thus, we can compute the amount of free hydronium from the previous
constrains as

Kw
[H3O+] + Ka · [Hα]0

[H3O+] + Ka
− Kb · [β]0

Kw
[H3O+] + Kb

− [H3O+] = 0.

Although a closed-form expression exists to solve this problem, it is quite
large and involved. Therefore, it is highly recommended to instead employ a
root-finding algorithm with fine tolerances to solve numerically.
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Daisyworld: pH homeostasis by engineered bacterial
communities
For the sake of simplicity, we will adopt an approximation wherein we assume
complete dissociation of all acids and bases. Consequently, our focus will be
solely on strong acids and strong bases. Although this is not realistic and
bacteria typically produce weaker acids and bases, the interesting dynamics
showcased by the model are preserved.

The model draws inspiration from Daisyworld, a conceptual model featuring a
hypothetical planet where two types of daisies—black and white—coexist and
interact with their environment. This planet begins with a barren surface,
with daisies being the sole life form introduced. A crucial aspect is that
the daisies are assumed to significantly affect the planet’s albedo, thereby
influencing its temperature and playing a pivotal role in global climate
regulation.

In this scenario, black daisies absorb more sunlight, leading to a slight
increase in their local temperature, whereas white daisies reflect more sunlight,
contributing to a slight decrease in their local temperature. The overall
temperature of Daisyworld is affected by the impact on albedo from both
the black and white daisies.

In our scenario, we have two distinct strains of bacteria, genetically modified
to consistently produce either an acid or a base, cultivated within a chemostat.
This setup parallels Daisyworld, but instead of temperature, we focus on
pH. The acid-producing bacteria protonate their surroundings, leading to a
slight acidification in the pH sensing pathways (which is a result of both the
remaining acid inside the cell, and the acid in the immediate environment).
Conversely, the base-producing bacteria deprotonate their surroundings,
leading to a slight alkalinization in the pH sensing pathways.

Cell dynamics

This can be naively modeled using a system of differential equations as
follows

dua

dt
= [ϕ · β(pHa) − δ] · ua,

dub

dt
= [ϕ · β(pHb) − δ] · ub,

where ua is the concentration of the acid-producer strain, ub is the concen-
tration of the base-producer strain, ϕ = 1 − (ua + ub) is a simple logistic
term used to limit cell growth, and δ is the dilution rate of the chemostat.
The function β(pHx) characterizes the maximum growth rate achievable at
a specific pH. It aggregates various pH-dependent factors influencing cell
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growth, including nutrient availability. A simplified version of this function
can be represented as a parabola, defined as

β(pHx) =
pHopt − pHx

pHopt − pHlim
,

where pHopt is the optimal pH for growth, pHlim represents the maximum
deviation from the optimum pH that still permits bacterial growth, and pHx

is the pH level sensed by the strain ux. This function exhibits a single peak at
the optimal pH, and decreases as the pH deviates from this optimum.

The typical definiton for pH for conversion from H3O+ is used:

pH([H3O+]) = − log10

(
[H3O+]

1 M

)
.

Molecular dynamics

Appart from cell dynamics, we also should model the pH change over time.
Bacteria create an acid (or a base) at a constant rate, and the molecules are
exported through the membrane as

∅ γ−→ ai
k1−⇀↽−
k2

ae
δ−→ ∅, ∅ γ−→ bi

k3−⇀↽−
k4

be
δ−→ ∅,

where ai and bi are the internal acid and base concentrations, and ae and
be are the external acid and base concentrations. The equivalent differential
equations are

dai

dt
= γ − k1 · ai + k2 · ae

dae

dt
= k1 · ai − k2 · ae − δ · ae

dbi

dt
= γ − ke · bi + k4 · be

dbe

dt
= k3 · bi − k4 · be − δ · be

It can be assumed that those reactions, happening at the molecular level, are
in fact much faster than the population dynamics of interest. Therefore, by
applying the fast-relaxation assumption, we have

a∗
i = γ(k2 − δ)

δ · k1
, a∗

e = γ

δ
,

b∗
i = γ(k4 − δ)

δ · k3
, b∗

e = γ

δ
.
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We can then compute the environmental pH from the approximated H3O+

from the mix of acids and bases in the media as previously discussed

Hf (A, B) = A − B ±
√

(A − B)2 + 4 · Kw
2 ,

where A := ua · ae + A0, and B := ub · be + B0. Here, A0 and B0 represent the
concentrations of acid and base, respectively, in the supplied media.

With this information, we can also compute pHa and pHb as

pHa := − log10 (Ha) , Ha := Hf (A + ωa · ae, B),
pHb := − log10 (Hb) , Hb := Hf (A, B + ωb · be),

where ωx is a parameter modeling the sensitivity of the strains to the molecule
being produced. It is assumed to be a parameter depending on the amount
of internal and external molecule in a generic form

ωa · ae = c1 · (c2 · ai + c3 · ae)= c1 ·
(

c2 · k2 − δ

k1
+ c3

)
· ae,

ωb · be = c4 · (c5 · bi + c6 · be) = c4 ·
(

c5 · k4 − δ

k3
+ c6

)
· be,

where ci, i ∈ {1, 2, 3, 4, 5, 6}, are parameters that control the extent to which
the acid or base disrupts the internal pH homeostasis or the local external
pH.
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